4 research outputs found

    A-2000: Close air support aircraft design team

    Get PDF
    The US Air Force is currently faced with the problem of providing adequate close air support for ground forces. Air response to troops engaged in combat must be rapid and devastating due to the highly fluid battle lines of the future. The A-2000 is the result of a study to design an aircraft to deliver massive fire power accurately. The low cost A-2000 incorporates: large weapons payload; excellent maneuverability; all weather and terrain following capacity; redundant systems; and high survivability

    Lift-Enhancing Tabs on Multielement Airfoils

    Get PDF
    The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%

    Navier-Stokes Analysis of Lift-Enhancing Tabs on Multi-Element Airfoils

    Get PDF
    The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 to 1.25% of the reference airfoil chord were studied near the trailing edge of the main element. The two-dimensional numerical simulation employed an incompressible Navier–Stokes solver using a structured, embedded grid topology. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers, with computed results shown to be in good agreement with experimental data
    corecore